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Quantification!

What is it all about?

Level 2 („diagnostics“): physiologic parameters

Level 1 („dosimetry“): tracer concentration (kBq/ml)

• perfusion (ml blood / g tissue / min)
• metabolic rates (µmol substrate / g tissue / min)
• receptor density (fmol / mg)
• affinity of tracer for target (nM)
• …
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Quantification of physiologic parameters in PET: problem
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Quantification of physiologic parameters in PET: solution
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functional compartments might be separated in time (rather than space)
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Quantification of physiologic parameters: tracer kinetic modelling

1a) dynamic PET / SPECT imaging

1b) blood sampling (input function) 
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2.   fit model to measured data
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Kinetic modelling: To model or not to model?
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[F-18]-fluorodeoxyglucose (FDG)
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• β+ decay (BR 100%)
• half-life 110 min

target of modelling: metabolic rate of glucose MRGlc (µmol glucose / g tissue / min)
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FDG-PET: conventional procedure

FDG

40 min p.i.

FDG retention = MRGlc?

static uptake (retention) image
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FDG-PET: tracer kinetic modelling versus retention image

Graham M et al., Nucl Med & Biol 2000; 27: 647-55 

40 patients with colon cancer

metabolic rate of glucose
(kinetic modelling)

FDG retention
(standardized uptake value, SUV)
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FDG-PET: tracer kinetic modelling versus retention image

Graham M et al., Nucl Med & Biol 2000; 27: 647-55 

equivalent FDG retention
(standardized uptake value, SUV)

metabolic rate of glucose
(kinetic modelling)
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unmetab.
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Tissue

FDG: pharmacokinetics
• phosphorylation is irreversible

• single pass extraction fraction is small

K1 = E * F

F = perfusion (ml / 100g / min)

E = extraction = 1 – exp(-PS/F)

PS = permeability surface area product

E ≈ 1 – (1 – PS/F) = PS/F

K1 = E * F ≈ PS/F * F = PS

FDG retention ~ metabolic rate

healthy subjects (brain, euglycemia)
K1 = 0.07 ml/g/min
k2 = 0.12 min-1

k3 = 0.04 min-1

GLUT

hexokinase

GLUT

(Renkin-Crone)

i.e., K1 independent of perfusion
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FDG: cave in extreme conditions

perfusion (H2
15O)

Recurrence of hepatocellular carcinoma after chemoembolisation

FDG retention glucose consumption rate

adapted from Wolfgang Burchert, Bad Oeynhausen
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FDG: cave liver
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11--tissue compartment modelstissue compartment models

22--tissue compartment modelstissue compartment models

unidirectional transport

tissue
K1

bidirectional transport

irreversible binding

free

K1

k2

bound
k3

reversible binding

free

K1

k2

bound
k3

k4

O-15-water

tissue

K1

k2

Compartment models

freely diffusible

K1 = E * F ≈ F

F-18-FDG
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Bidirectional transport

formula representation
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PET signal (time activity curve)
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Modeling: (linear) system

tissue voxel
K1, k2

stimulus(t)
CA = tracer in blood

response(stimulus; K1,k2; t)
CT = tracer in tissue

(least squares) fit
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Female, 16 y, Moyamoya disease
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maximum dilatation of blood vessels (Diamox)
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after arrival in brain

Female, 16 y, Moyamoya disease
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image algebra
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Diamox
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cerebrovascular reserve (%)

= 100*(Diamox-rest)/rest

Female, 16 y, Moyamoya disease

CVR (%)

global effects

follow-up

….
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22--tissue compartment modelstissue compartment models

unidirectional transport
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perfusion SPECT with Tc-99m-HMPAO
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chemical microsphere

K1 = E * F ≈ F O-15-water

F-18-FDG
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Female, 16 y, Moyamoya disease

input function?
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HMPAO-SPECT in mice: dynamic planar imaging
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HMPAO-SPECT in mice: input function
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HMPAO-SPECT in mice: regional cerebral blood flow
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reversible binding
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some „technical“ issues

non-linear operational equations

statistical noise
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How to handle statistical noise: minimize sum of squared differences

time

provides „best“ solution (based on some assupmtions)

k

N

N

radioactive decay
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Method to handle nonlinearity: no perfect general solution

identifiability?

sum of squared differences

K1

k2

particularly in presence of noise
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Identifiability

reversible binding

K1 k2

k3 k4

tissue voxel

linearization (Gjedde-Patlak…)?
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Tracer kinetic modelling: cons

• risk and burden for patient (arterial blood sampling, extended imaging duration)

• radiation exposure of staff (blood sampling)

• „expensive“

- scanner allocation > 60 min

- staff (well counter measurements, analysis…)

• prone to errors (noise, calibration, patient motion…)

except with
reference tissue methods
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Tracer kinetic modelling: pros

• differentiation of physiologic functions (transport, metabolism…)

• quantitative characterization of physiologic function of interest

• improved contrast

• improved statistical image quality

- intra-subject comparison (follow-up)

- inter-subject comparison (range of normal values)
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Thank you!


