

Deutsche Gesellschaft für Nuklearmedizin e.V.

Translational Research in Molecular Imaging and Radionuclide Therapy

September 4 – 6, 2014

Tracer Development and Translation into Clinical Studies – Commercial Research Dr. Ludger Dinkelborg

Piramal Imaging, Berlin

Making the Invisible Visible

- 1. Introduction
- 2. Industrial Research Approach
- 3. Proof-of-Mechanism Concept
- 4. Examples from neuro-, onco- and cardiovascular imaging

Diagnostic Imaging in Berlin – Innovation & Leadership Since 1930

Piramal Imaging – at a Glance

The Company	 Piramal Imaging was established in 2012 through Piramal's acquisition of Bayer AG's molecular imaging portfolio
Locations	 R&D hub in Berlin, Germany and subsidiaries in Cambridge, UK and Boston, USA
Our Focus	 Innovative radiopharmaceuticals for PET imaging for the diagnosis of life-threatening diseases in neurology, oncology and cardiology
First Product in Market	 NeuraCeq[™] (Florbetaben F18) approved in Europe and USA
Radiopharmaceuticals in Development	 Neurology: MAO-B for neuro-inflammation; Tau for neurodegeneration
	 Oncology: FSPG for brain tumor and Bombesin for prostate cancer

• Cardiovascular: GP1 for thrombus imaging

Stakeholders in commercial research

Personalized Medicine and Molecular Imaging

Molecular Imaging versus Therapeutic Research

- At the start of a molecular imaging research project, a targeting mechanism as well as lead structures are usually known from previous therapeutic studies
- Only limited target identification and validation in animals
- Low dose of intravenously injected "tracers" allows for clinical proof of mechanism (target validation) during research phase
- Only intravenous application tracers
- Additional intellectual property is generated by inventing methods to include the radioisotope (e.g. F-18) into the molecule of choice and optimizing its pharmacokinetics
- ⇒ This results in an earlier selection of successful development candidates, a lower attrition rate at late development stages leading to reduced R&D costs if compared to therapeutic drugs

Early selection of promising radiopharmaceuticals for development

- Proof-of-mechanism (PoM) is the early evaluation of a pre- or clinically based targeting hypothesis (mechanism of action) of a radiopharmaceutical in patients making use of microdosing (or exploratory IND in the USA) procedure
- In addition, information on target accessibility (*in vivo* stability, pharmacokinetics) of the investigated tracer is obtained
- Microdosing trials (ICH guideline M3, R2, Dec 2009)
 - tracers injected < 100 μg
 - < 1/100th the dose calculated to yield a pharmacological effect</p>
 - introduced in June 2004
- Limited safety requirements
- Labeling of tracers will be done on-site

Translational Research in PET

Rapid Evaluation of Efficacy

- Early selection of development candidates
- Higher success rates in later development

Oncology Imaging - Medical Needs Beyond FDG

Medical Needs From Top to Toe

FDG 'Problem' Areas:

- Brain tumors & mets
- H&N, thyroid Ca
- Lung Ca (differentiation from inflammation)
- Breast tumors
- HCC & Upper GI tract
- Pancreatic Ca
- Colorectal Ca
- Prostate Ca
- Ovarian Ca
- Renal cell Ca

FDG is not tumor-specific

FDG falls short in several indications & settings

Medical Need:

- Increased sensitivity (FDG non-avid tumors)
- Increased specificity (inflammation differentiation)
- Improved tumor to background ratio (no uptake in healthy organs,
 - e. g. brain, muscle, pelvis)
- Early therapy monitoring

Our approach:

- Targeting of intermediary tumor metabolism & specific surface receptors
- Use of F-18-labeled amino acids as pre-cursors for anaplerotic reactions and detoxification processes & tumor-specific receptor ligands

FSPG PET imaging of system x_{C}^{-} transporter activity reveals a dominant pathway in tumor metabolism

Goals:

- Identification or exclusion of malignancies in patients where FDG has proven inadequate sensitivity or specificity
- Potentially guiding therapy decisions for improved outcome

Tracer profile:

- F-18 labeled glutamate derivative, specifically transported by system x_C⁻, which correlates with CD44 expression in tumors
- Rapid clearance, low background especially in brain enabling detection of brain metastases

Baek et. al Clin Cancer Res. 2012 Oct 1;18(19):5427

FSPG visualizes a dominant pathway in tumor metabolism

4-[F-18]F-glutamate: Preclinical characterization of a new probe to study tumor metabolism

DGN

First generation PET-Tracer: 4-[F-18]F-glutamate

4-Substituted glutamate derivatives still show inhibition in cell uptake competition assay

A549 cell competition assays using radiolabeled glutamate for screening:

FSPG visualizes tumors in rodent models with low background

Preclinical PET / CT imaging of human H460 lung tumors in nude rats, 90 min p.i., Inveon PET/CT

FSPG PET imaging:

- High tumor uptake and retention
- No defluorination
- Rapid renal clearance, low background in healthy tissues
- Excellent tumor imaging in various models
 - Lung cancer (A549, H460, LL)
 - Prostate cancer (LNCaP, PC3, DU-145)
 - Breast cancer (MCF7, 4T1)
 - Liver cancer (Huh7, MH3924a)
 - Glioblastoma (GS9L)
 - Colon cancer (HT29, HCT116)
 - Melanoma (SK-Mel3, B16F1)

Koglin et al., Clin Canc Res 2011

FSPG accumulates in primary and metastatic NSCLC

Stanford University School of Medicine Department of Radiology

FSPG:

- High tumor uptake and retention
- Low background
- Rapid blood clearance
- Rapid urinary excretion

Deutsche Gesellschaft für Nuklearmedizin e.V.

FSPG Uptake correlates with staining of system x_{c}^{-} & CD44

Courtesy of Prof. D.H. Moon & Prof. S.J. Oh (Asan MC) High detection rate in NSCLC & additional lesions (arrows) found with FSPG compared to FDG

Baek S et al. Clin Cancer Res. 2012

CD44 3+

Iterative Radiotracer Development: The glutamate example

Bombesin: Improve prostate cancer detection and location

Tracer profile:

- Ga-68 labeled Bombesin antagonist specifically binding to gastrinreleasing peptide receptors (GRPr) overexpressed in prostate cancer
- Histopathological analyses indicates significantly higher uptake in cancer compared to benign tissue
- High Sensitivity (89%) and Specificity (81%) for PCa detection
- Accurate detection of PCa in 10/11 subjects, with change in patient management in 36% (4/11) of subjects

Deutsche Gesellschaft für Nuklearmedizin e.V.

Ga-68-Bombesin PET correlates well with tumor histopathology

Courtesy of PET Centre Turku, Finland (H. Minn)

Next steps:

 Initiate Phase I/II study in EU to evaluate potential of ⁶⁸Ga-Bombesin for tumor detection in low, medium and high risk patients

GP1: Identify patients at high risk for thrombo-embolic events

Tracer profile:

- GP1 is a 18F-labelled, specific high affinity binder to the GPIIb/IIIa receptor of human platelets
- Visualization of small thrombi should allow improved therapeutic decision making

Potential indication:

 PET-Imaging of thrombi and sources of emboli that caused cerebral ischemic events or exclusion of thrombotic or embolic cause in patients with Transient Ischemic Attacks (TIA)

Next steps:

· First-in-man study ongoing

GP1 images thrombi by binding to activated platelets

In monkeys, GP1 demonstrated sensitive and specific detection of platelet depositions on catheter and endothelium surfaces as well as on emboli

Targeting pathologic proteins of neurodegenerative diseases

Deutsche Gesellschaft für Nuklearmedizin e.V.

Summer School 2014, September 4 - 6, 2014

Alzheimer's disease: The health care challenge

Urgent need for:

- Early, accurate diagnosis of AD
- Disease Modifying Drugs
 - Delaying onset of Alzheimer's dementia by 5 years
 - → 50% fewer patients in 2050 → Savings in the Germany: 65 Mrd/year²

Amyloid show earliest abnormality during progression of AD

• Amyloid shows abnormality 10-15 years before cognitive decline:

*MMSE = Mini Mental Status Examination

Deutsche Gesellschaft für Nuklearmedizin e.V.

Amyloid-beta and Tau play crucial roles in Alzheimer Disease pathology

Amyloid-beta

"Plaque" Deposition starts before cognitive decline occurs

Tau

"Neurofibrillary Tangle" Correlates with cognitive decline

So far, confirmation of AD during autopsy by detection of amyloid plaques & neurofibrillary tangles using silver staining and/or immunohistochemistry

From Dyes for Staining of Amyloid Plaques to Tracers for PET Imaging

Deutsche Gesellschaft für Nuklearmedizin e.V.

Florbetaben: A F-18 Labeled Stilbene with High Affinity to Amyloid-Beta

- Stilbene derivative
- Labeled with F-18 for PET detection (PEG linker)
- Trade name: NeuraCeq
- High affinity to amyloid-beta plaques
- High specificity: no binding to NFTs (Tau), Pick bodies, Lewy bodies
- Ability to cross the blood brain barrier and detecting amyloidbeta deposits in the brain

Physical Half Life: 110 min

Shelf Life: 10 hours

Florbetaben - Overview of non-clinical development

Favorable pharmacologic and pharmacokinetic profile
No non-clinical safety and toxicological concerns

Florbetaben Clinical Development: >900 Subjects Studied

Florbetaben uptake correlates with amyloid-plaque deposition

Deutsche Gesellschaft für Nuklearmedizin e.V.

Robust visual assessment method was validated for clinical practice

- Acquisition: for 20 min starting approx. 90 min p. i.
- Systematic visual Interpretation: gray scale, binary assessment

Deutsche Gesellschaft für Nuklearmedizin e.V.

Florbetaben detects amyloid plaques with high sensitivity and specificity

Systematic visual analysis of the brain PET scans

- Scans from 46 of 47 subjects with beta-amyloid were correctly read as positive
 Sensitivity: 98%
- Scans from 24 of 27 subjects without beta-amyloid were correctly read as negative
 - → Specificity: 89%

Negative scans allow physicians to consider alternative causes of cognitive impairment not associated with β -amyloid pathology

Positive scans along with other tests help determine if β -amyloid pathology is due to AD or some other cognitive disorder

FBB MCI-Study 4 year follow-up data: No subject with negative scan converted to AD

Deutsche Gesellschaft für Nuklearmedizin e.V.

Summer School 2014, September 4 - 6, 2014

Ong, et al. JNNP 2014

Hints for high predictive accuracy of amyloid-PET in the FBB MCI-study

Summary Neuroimaging

- 1. Amyloid beta PET imaging increases the **diagnostic accuracy**, hence the **confidence** for patients and physicians
 - A negative scan in a symptomatic patient essentially rules out Alzheimer's disease and requires further diagnostic investigation
- 2. Amyloid beta PET may be important to predict **progression** / non-progression to AD in a population of MCI
- 3. Early and accurate detection of amyloid beta are a prerequisite to identify and develop **disease modifying drugs**

Summary

- Applied research selects candidates for indications with proven clinical relevance
- It does not replace basic research
- Molecular Imaging has great potential to personalize the therapy and improve the quality of life for patients with significant diseases
- Proof-of-mechanism studies allow for early selection of promising radiopharmaceuticals for development
- Further research and development for molecular tracers in neurodegenerative diseases, oncology and cardiovascular imaging is warranted

Close collaboration of academia and industry is key

