Universitätsklinikum Würzburg

Dosimetry in Diagnostic and Therapeutic Nuclear Medicine

M. Lassmann

Klinik und Poliklinik für Nuklearmedizin Direktor: Prof. Dr. A. Buck

Contents

- > Introduction
- Basic Principles
 - The MIRD Concept
 - Three Steps to Calculate Absorbed Doses
- Applying the MIRD Concept
 - > Diagnostics
 - Treatment of Differentiated Thyroid Cancer
 - > Treatment of Neuroendocrine Tumors
 - > SIRT

> Conclusion

Fundamentals of Nuclear Medicine Dosimetry

- The administered activity distributes in the body
- Based on cellular functions and physiology, it accumulates in individual organs in a different way (biodistribution and biokinetics)
- Source organs irradiate target organs, self-irradiation of organs is also possible
- For assessing radiation-related risks, the absorbed dose in the individual organs needs to be calculated
- For calculating absorbed dose, a formalism called MIRD*-Scheme was developed in 1976 (summing over all organ contributions)

Isotopes used for Therapy

Radio- nuclide	dio- Halflife β _{max} clide (h) (MeV)		γ (keV)	Max. range (mm)	
I-131	192	0.61	364	2.0	
Y-90	64	2.3	-	12	
Lu-177	161	0.50	208	1.5	
Ra-223	274	α			

Paradigm of Targeted Molecular Radiotherapy:

Optimisation of the efficacy by minimising the damage to normal organs/tissues ("Safety")

Therapy Modalities

Metabolic active radiopharmaceuticals

- Radioiodine Therapy of Thyroid Diseases (benign/malignant)
- Bone Pain Palliative Treatment of Bone Metastases

Specifically binding radiopharmaceuticals

- Radiopeptide therapy (addressing specific antigens or receptors)
- Treatment of lymphoma using antibodies

Locoregional therapies

- Selective Internal radiotherapy
- Radiosynoviorthesis

Radioiodine Therapy of Thyroid Cancer

$$D(r_{T}) = \sum_{S} \left(\int A(r_{S}, t) dt \cdot S(r_{T} \leftarrow r_{S}) \right)$$

Title: Z Med Phys December 2011

Universitätsklinikum Würzburg UK

Palliation of Bone Metastases

Alpharadin, a novel, targeted approach for treatment of bone metastases from CRPC

Lewington et al, Poster@ASCO 2011

Example: Selective Internal Radiotherapy

Transarterial embolization of radioactive labeled microspheres (Y-90)

Highly selective tumor uptake by intraarterial administration of the particles through the a. hepatica

http://nuk.klinikum.uni-muenchen.de/therapie/014_ther_sirt.php http://www.sec.gov/Archives/edgar/data/873364/000110465903001888/j7431_ex99d1.htm

Contents

- > Introduction
- Basic Principles
 - The MIRD Concept
 - Three Steps to Calculate Absorbed Doses
- Applying the MIRD Concept
 - > Diagnostics
 - Treatment of Differentiated Thyroid Cancer
 - > Treatment of Neuroendocrine Tumors
 - > SIRT

> Conclusion

MIRD Formalism: Volume Generalisation

D mean absorbed dose over target volume

Non-penetrating Radiation

Depends on: organ size & particle range

Radionuclide generalisation

The dose rate is the sum of all contributions (all type i radiation)

$$\overline{\dot{D}}(t)_{(k \leftarrow h)} = K \cdot A_h(t) \cdot \sum_i n_i E_i \cdot \Phi_i(k \leftarrow h)$$

Integration over Time

Take into account the time during which irradiation takes place...

$$\overline{D}_{(k \leftarrow h)} = \int_{t_1}^{t_2} \overline{\dot{D}}(t)_{(k \leftarrow h)} dt$$

Therefore:

$$\overline{D}_{(k \leftarrow h)} = \int_{t_1}^{t_2} K \cdot A_h(t) \cdot \sum_i n_i E_i \cdot \Phi_i(k \leftarrow h) dt$$

 $\overline{D}_{(k \leftarrow h)}$ is the mean absorbed dose (Gy) in target k from source h

Integration over Time (2)

Cumulated activity

$$\widetilde{A}_{h} = \int A_{h}(t) dt$$

 \tilde{A}_h represents the total number of nuclear transitions occurring in source h

Usually: lower limit: 0 upper limit: ∞ $\widetilde{A}_h = \int_0^\infty A_h(t) dt$

Â_h is calculated from biologic data: pharmacokinetics estimated graphically, numerically, ...

Residence time: τ_h

A₀ is the injected activity

Universitätsklinikum Würzburg UK

MIRD simplified equation

$$\overline{D}_{(k \leftarrow h)} = \widetilde{A}_h \cdot S_{(k \leftarrow h)}$$
$$\overline{D}_{(k \leftarrow h)}$$
$$\overline{D}_{(k \leftarrow h)} = \tau_h \cdot S_{(k \leftarrow h)}$$

Internal dose estimates – "marriage" of physical and biological quantities

- ► <u>Biology</u> distribution and kinetics
- <u>Physics</u> energy deposition patterns

Universitätsklinikum Würzburg

The Three Steps for Internal Dosimetry

Quantitative Imaging

Calibration – measurement set-up

SPECT/CT: Symbia T2 (Siemens)

Universitätsklinikum Würzburg

Calibration and quantification

Calibration – Reconstruction

The Three Steps for Internal Dosimetry

► Quantitative Imaging

Integration of the Time-Activity Curve

Example - PRRT

Figure 1.—Radioactivity uptake in the kidneys of a patient, injected with ¹¹¹In-DTPA-octreotide (left graph) and with ⁸⁶Y-DOTA-octreotide (right graph). Three curve fitting methods were used for establishing the time-activity curve: the trapezoid method, a single exponential and by compartmental modelling.

Konijnenberg M. From imaging to dosimetry and biological effects. Q J Nucl Med Mol Imaging 2011; 55: 44-56.

Example: Radioimmunotherapy

$$f_1(t) = A_1 \cdot e^{-(\lambda_{phys} + \lambda_1) \cdot t} + A_2 \cdot e^{-(\lambda_{phys} + \lambda_2) \cdot t} \qquad f_2(t) = A_1 \cdot \left(e^{-(\lambda_{phys} + \lambda_1) \cdot t} - e^{-(\lambda_{phys} + \lambda_2) \cdot t} \right)$$

Universitätsklinikum Würzburg UK

Universitätsklinikum Würzburg

Medizinische Fakultät Mannheim der Universität Heidelberg Universitätsklinikum Mannheim

Molecular radiotherapy: The NUKFIT software for time-integrated activity coefficient calculation

P. Kletting, S. Schimmel, H. A. Kestler, H. Hänscheid, M. Luster, M. Fernández, J.H. Bröer, D. Nosske, <u>M. Lassmann</u>, G. Glatting

This work is financed by the BMBF (AZ: 01EZ1130)

NukDos

Med. Phys. 2013

Klinik und Poliklinik für Nuklearmedizin Direktor: Prof. Dr. A. Buck

The Three Steps for Internal Dosimetry

- Quantitative Imaging
- Integration of the Time-Activity Curve
- Determination of the S-Values

Applying the MIRD Formalism: Diagnostics

$ ilde{A}_h$	$S(k \leftarrow h)$	$\overline{D}_{(k \leftarrow h)}$
Group	model	model
Specific	Model ± adjusted	Model ± realistic
Specific	Specific	Specific

Â_h from animal studies, healthy volunteers, etc.
 S from anthropomorphic phantoms
 Model based dosimetry: IRCP, MIRD DER

≠ radiopharmaceuticals≠ biokinetics

Applying the MIRD Formalism

$ ilde{A}_h$	$S(k \leftarrow h)$	$\overline{D}_{(k \leftarrow h)}$
Group	model	model
Specific	Model ± adjusted	Model ± realistic
Specific	Specific	Specific

Patient-specific \tilde{A}_h determination. S from « realistic » anthropomorphic phantoms « Realistic » Model based dosimetry: most frequent

Olinda mass adjustment module

🖄 Input Data:

Phantom organ masses (g) for the Adult Male

Next Phantom	Previous Phantom		Hit ≺ret≻ to see chang	:≺ret≻ to see changes immediately, or just DONE at end		
	16.3	Adrenals	94.3	Pancreas		
	1420.0	Brain	1120.0	Red Marrow		
	351.0	Breasts	120.0	Osteogenic Cells		
	10.5	Gallbladder Wall	3010.0	Skin		
	167.0	LLI Wall	183.0	Spleen Testes		
	677.0	Small Intestine	39.1			
	158.0	Stomach Wall	20.9	Thymus		
	220.0	ULI Wall	20.7	Thyroid		
	316.0	Heart Wall	47.6	Urinary Bladder Wall		
	299.0	Kidneys	79.0	Uterus		
	1910.0	Liver	0.0	Fetus		
	1000.0	Lungs	0.0	Placenta		
	28000.0	Muscle	73700.0	Total Body		
	8.71	Ovaries				
	Alpha Weight Factor	Beta Weight Factor	Photon Weight Factor			
	5.0	1.0	1.0	Reset organ values		
	Multiply all masses by:	1.0		DONE		

_ 🗆 X

** = Modified by user

Mass Adjustment:

For SELF Irradiation Only

$$S_{r\leftarrow r}(patient) = S_{r\leftarrow r}(standard) \cdot \frac{Mass_r(standard)}{Mass_r(specific)}$$

Applying the MIRD Formalism

${ ilde A}_h$	$S(k \leftarrow h)$	$\overline{D}_{(k \leftarrow h)}$
Group	model	model
Specific	Model ± adjusted	Model ± realistic
Specific	Specific	Specific

Patient-specific \tilde{A}_h determination. Patient-specific S factor determination Patient-specific dosimetry: therapy

Universitätsklinikum Würzburg

A fast method for rescaling voxel S values for arbitrary voxel sizes in targeted radionuclide therapy from a single Monte Carlo calculation

M. Fernández, H. Hänscheid, T. Mauxion, M. Bardiès, P. Kletting, G. Glatting, M. Lassmann

Med. Phys. 2013

Dosimetry Setup

Universitätsklinikum Würzburg UK

The NUKDOS Software for Dosimetry in Molecular Radiotherapy

Peter Kletting¹, Sebastian Schimmel¹, Heribert Hänscheid², Maria M. Fernandez², Jörn H. Bröer³, Dietmar Noßke³, Michael Lassmann² and Gerhard Glatting⁴

¹Klinik für Nuklearmedizin, Universität Ulm; ²Klinik für Nuklearmedizin, Universität Würzburg; ³Bundesamt für Strahlenschutz, Fachbereich Strahlenschutz und Gesundheit; ⁴Medizinische Strahlenphysik/Strahlenschutz, Medizinische Fakultät Mannheim, Universität Heidelberg

EANM Congress 2013

Contents

- > Introduction
- Basic Principles
 - The MIRD Concept
 - Three Steps to Calculate Absorbed Doses
- Applying the MIRD Concept
 - > Diagnostics
 - Treatment of Differentiated Thyroid Cancer
 - > Treatment of Neuroendocrine Tumors
 - > SIRT

> Conclusion

Applying the MIRD Formalism: Diagnostics

$ ilde{A}_h$	$S(k \leftarrow h)$	$\overline{D}_{(k \leftarrow h)}$
Group	model	model
Specific	Model ± adjusted	Model ± realistic
Specific	Specific	Specific

Â_h from animal studies, healthy volunteers, etc.
 S from anthropomorphic phantoms
 Model based dosimetry: IRCP, MIRD DER

Diagnostic nuclear medicine

- Low amounts of radiation delivered (stochastic effects)
- Dosimetry: for pre-marketing authorization (EMA, FDA) to establish posology/Diagnostic Reference Levels (DRLs)
- ICRP recommendations
- EANM pediatric dosage card

Effective Dose E

- Introduced by ICRP 60 in 1991
- Effective dose is a protection quantity

$$E = \sum_{T} w_T H_T$$

- ▶ Ö₇: tissue weighting factor, +₇: equivalent dose in organ 7
- $+_{7\#}$ organ absorbed dose weighted by a radiation weighting factor
- Related to the probability of health detriment to an adult reference person due to stochastic effects from exposure to low doses of ionizing radiation
- To compare different diagnostic procedures, or similar procedures in different hospitals and countries
- Not for individual dose and risk assessment
- This concept is problematic for the use in children

Effective Dose: Changes in ICRP 103

- ICRP defined new tissue weighting factors in their 2007 report (ICRP 103)
- The most significant changes are for breast tissue, gonads and the remainder organs

	ICRP 60 (1991)	ICRP 103 (2007)
Bladder	0.05	0.04
Bone	0.01	0.01
Brain		0.01
Breasts	0.05	0.12
Colon		0.12
Esophagus	0.05	0.04
Liver	0.05	0.04
Lower large Intestine	0.12	
Lungs	0.12	0.12
Ovaries/testes	0.20	80.0
Red marrow	0.12	0.12
Remainder tissues	0.05	0.12
Salivary glands		0.01
Skin	0.01	0.01
Stomach	0.12	0.12
Thyroid	0.05	0.04

Effective Dose: Changes in ICRP 103

- ICRP clearly defined more realistic female and male voxel phantoms
- Calculate organ absorbed doses for males and females separately and calculate the arithmetic mean of the equivalent dose
- The S-values have not yet been recalculated with the new models, therefore the new formalism of ICRP 103 cannot be applied to nuclear medicine at present

Evolution: ICRP reports

"Radiation dose to patients from radiopharmaceuticals"

- 1988 ICRP Publication 53. Ann. ICRP 18 (1-4)
- 1993 Addendum 1 to ICRP Publication 53. Ann. ICRP 22(3)
- 1998 Addendum 2 to ICRP Publication 53. Ann. ICRP 28 (3)
- 2008 Addendum 3 to ICRP Publication 53. Ann. ICRP 38 (1-2)

Example I: Absorbed Dose to the Blood in DTC Patients

Hänscheid, Lassmann... JNM 2006

Surrogate for the Bone Marrow Dose > Aim: Maximising the absorbed dose to the tumor while avoiding myelotoxicity (< 2 Gy no bone marrow suppression Benua 1962)

178

R. S. E	Benua, N. R.	Cicale, M.	Sonenberg and R.	W. Rawson	JANUARY, 1962
---------	--------------	------------	------------------	-----------	---------------

TABLE V COMPLICATIONS AND RESULTS IN RELATION TO BLOOD TOTAL RADIATION

Blood Total	Serious Radiation Complications*			Objective Good Results*			
Radiation (rads)	Doses	Severe	Fatal	Total (per cent)	Sustained	Temporary	Total (per cent)
0-99	5	0	0	0	I	I	40
100-199	24	I	0	4	7	6	54
200-299	33	5	I	18	7	. 3	30
300-399	7	I	I	29	I	2	43
400-499	9	0	2	22	2	I	33
Over 500	7	2	0	29	I	2	43
Unknown	37	I	0	3	2	7	24
			-				
Total	122	IO	4	II	21	22	35
* See text for defi	nition of classifi	cation		A o			

* See text for definition of classification

Example I: Absorbed Dose to the Blood in DTC Patients

Universitätsklinikum Würzburg UK

Example I: Absorbed Dose to the Blood in DTC Patients

Lassmann M et al. EANM SOP: Blood and Bone Marrow Dosimetry

in Differentiated Thyroid Cancer Therapy EJMMI 2008

Universitätsklinikum Würzburg

Results: Distribution of Blood Doses after Therapy (66 patients)

- 66 post-therapeutic (PT) assessments after administration of 3-5 GBq
- Determination of radioiodine kinetics by taking blood samples and measuring whole \succ body activities at least 96h after the administration of I-131

Example II: Absorbed Dose to Metastases in a DTC Patient

Universitätsklinikum Würzburg UK

Example III: Dosimetry in Radiopeptide Therapy

Individualized Dosimetry of Kidney and Bone Marrow in Patients Undergoing ¹⁷⁷Lu-DOTA-Octreotate Treatment

J Nucl Med 2013; 54:1-9

Mattias Sandström^{1,2}, Ulrike Garske-Román^{2,3}, Dan Granberg³, Silvia Johansson², Charles Widström¹, Barbro Eriksson³, Anders Sundin^{2,4}, Hans Lundqvist⁵, and Mark Lubberink²

Example IV: Selective Internal Radiotherapy

Transarterial embolization of radioactive labeled microspheres (Y-90)

Highly selective tumor uptake by intraarterial administration of the particles through the a. hepatica

http://nuk.klinikum.uni-muenchen.de/therapie/014_ther_sirt.php http://www.sec.gov/Archives/edgar/data/873364/000110465903001888/j7431_ex99d1.htm

Example IV: Selective Internal Radiotherapy

Eur J Nucl Med Mol Imaging (2010) 37:1654–1662 DOI 10.1007/s00259-010-1470-9

ORIGINAL ARTICLE

Feasibility of ⁹⁰Y TOF PET-based dosimetry in liver metastasis therapy using SIR-Spheres

Renaud Lhommel • Larry van Elmbt • Pierre Goffette • Marc Van den Eynde • François Jamar • Stanislas Pauwels • Stephan Walrand

Absorbed Dose to the Blood in DTC Patients

Conclusions

► General equation :

$$\overline{D}_k = \sum_h \widetilde{A}_h \cdot S_{(k \leftarrow h)}$$

- Dosimetry can accommodate various clinical situations; relies on important hypotheses:
 - Homogeneous activity in each source
 - Calculation of MEAN absorbed dose in the target
- Three Steps to Successful Dosimetry in Nuclear Medicine:
 - Quantitative Imaging
 - Integration of the Time-Activity Curve
 - Determination of the S-Values

Dosimetry is successful in a many clinical applications

