Examples for Translational Research Projects Somatostatin Receptor Ligands

Damian Wild

Professor of Nuclear Medicine Division Head of Nuclear Medicine

Department of Radiology Division of Nuclear Medicine University of Basel Hospital

Sst₂ receptors in cancer: incidence and density

Targeting of somatostatin receptors with radiolabelled peptides

[¹¹¹In – DOTA⁰ - DPhe¹, Tyr³] - Octreotate (DOTATATE)

Imaging:

1. ¹¹¹In for SPECT and SPECT/CT

2. ⁶⁸Ga for PET and PET/CT

Therapy:

- 1. high energy β -emitter ⁹⁰Y
- **2.** low energy β -emitter ¹⁷⁷Lu
- 3. high energy α -emitter ²¹³Bi

Somatostatin receptor imaging in NETs

FDA etc. approved

investigation time: 24 h

radiationexposure: 9 mSv

sensitivity: ~ 70%

limited availability not approved

Investigation time: 90 min

radiationexposure: 3 mSv

sensitivity: > 90%

changes treatment in ~ 70 % of patients with negative Octreoscan[®]

M. Gabriel et al. J Nucl Med, 2007;48:508-18 I. Buchmann et al. Eur J Nucl Med Mol Imaging, 2007;34:1617-26 R. Srirajaskanthan et al. J Nucl Med, 2010;51:875-82

Lung- and GEP NETs: sst receptor SPECT vs. PET

Comparison of ⁶⁸Ga-DOTA-TOC PET and Octreoscan[®] SPECT in 84 patients with lung- and GEP NETs (patient based analysis)

	⁶⁸ Ga-DOTA-TOC PET	Octreoscan SPECT
Sensitivity	97%	52%
Specificity	92%	92%
Accuracy	96%	58%

Gabriel et al. J Nucl Med, 2007, 48:508-518

Diagnostic performance of Gallium-68 sst receptor PET, meta-analysis in 567 patients (patient based analysis)					
	sstR PET				
Sensitivity (95% CI)	93% (91 – 95%)				
Specificity (95% CI)	91% (82 – 97%)				
	Tradia at al Endoarina 2012 12:00 07				

Treglia et al. Endocrine, 2012, 42:80-87

"Somatostatin receptor PET is superior

to somatostatin receptor SPECT in the detection of NET"

Gabriel et al. J Nucl Med, 2007; 48:508-18

"PET has a much higher spatial resolution and sensitivity than SPECT"

Martin et al. Radiology, 1996; 198:225-31

Affinity profile given as IC ₅₀ (mean ± SEM in nM)						
Peptide	sst_1	sst ₂	sst ₃	sst ₄	sst ₅	
SS-28	5.2 ± 0.3	2.7 ± 0.3	7.7 ± 0.9	5.6 ± 0.4	4.0 ± 0.3	
¹¹¹ In-Octreoscan	>10'000	22 ± 3.6	182 ± 13	>1'000	237 ± 52	
⁶⁸ Ga-DOTATOC	>10'000	2.5 ± 0.5	613 ± 140	>1'000	73 ± 21	
⁶⁸ Ga-DOTATATE	>10'000	0.2 ± 0.04	>1'000	300 ± 140	377 ± 18	
Reubi et al., Eur J Nucl Med, 2000; 27:273-82						

Example of a 37-year old man with a pancreatic NET (G2) who had the primary tumor removed, known liver metastases ? Restaging before surgery

Lung- and GEP NETs: ⁶⁸Ga-DOTA-TOC PET vs. triple-phase CT

Comparison of ⁶⁸ Ga-DOTA-TOC lung- and GEP NETs, evaluation	PET and triple-phase CT in 51 pati of 510 lesions (lesion based analysi	ents with is)
	⁶⁸ Ga-DOTA-TOC PET	Triple-phase CT
Sensitivity	73%	77%
Specificity	97%	85%
Accuracy	80%	80%
Specific detection rate	16% only PET	20% only tiple-phase CT
Body organs	pancreas, lymph node, liver	lung, bone, liver
	Puf at al	I Nucl Mad 2011 52:607 704

Ruf et al. J Nucl Med, 2011, 52:697-704

GPCR expression in GEP NETs

Ileal carcinoid (n = 27)

D. Wild, J. Schmitt, H.R. Mäcke et al., Eur J Nucl Med Mol Imaging, 2003; 30:1338-47

Affinity profile given as IC ₅₀ (mean ± SEM in nM)							
Peptid	sst ₁	sst ₂	sst ₃	sst ₄	sst ₅		
SS-28	5.2 ± 0.3	2.7 ± 0.3	7.7 ± 0.9	5.6 ± 0.4	4.0 ± 0.3		
⁶⁸ Ga-DOTATOC	>10'000	2.5 ± 0.5	613 ± 140	>1'000	73 ± 21		
⁶⁸ Ga-DOTATATE	>10'000	0.2 ± 0.04	>1'000	300 ± 140	377 ± 18		

Example of a 37-year old man with a pancreatic NET (G2) who had the primary tumor removed, known liver metastases ? Restaging before surgery

CT scan

⁶⁸Ga-DOTANOC PET 1h p.i. sst_{2,3,5} receptor PET

Comparison of ⁶⁸Ga-DOTATATE and ⁶⁸Ga-DOTANOC PET

Comparison of ⁶⁸ Ga-DOTA-TATE PET and ⁶⁸ Ga-DOTA-NOC PET in 18 patients with GEP NETs using a randomized cross-over design.						
		⁶⁸ Ga-DOTATATE PET sst ₂ -selective tracer	⁶⁸ Ga-DOTANOC PET sst _{2,3,5} -selective tracer			
patient by patient based analysis	sensitivity	94% (17/18)	94% (17/18)			
lesion by lesion based analysis						
all lesions	sensitivity	86% (212/250)	<mark>94%</mark> (232/248)			
Liver metastases	sensitivity	73% (68/93)	<mark>95%</mark> (88/93)			
Bone metastases	sensitivity	100% (89/89)	<mark>92%</mark> (82/92)			

D. Wild et al. J Nucl Med, 2013, 54:364-372

Targeting of somatostatin receptors with radiolabelled peptides

Peptide receptor radionuclide imaging and therapy = theranostic approach

[⁶⁸Ga – DOTA⁰ - DPhe¹, Tyr³] - Octreotide (⁶⁸Ga-DOTATOC) radionuclide chelator peptide = carrier

Personalized medicine & PRRT – theranostic approach

⁶⁸Ga-DOTATOC PET

3 cycles of PRRT (total of 15 GBq)

⁶⁸Ga-DOTATOC PET follow-up

⁶⁸Ga-DOTATOC PET/CT

⁶⁸Ga-DOTATOC PET/CT

Summary PRRT-Results

Trial	Protocol		PD at entry	N	CR/PR (%)	Median PFS (months)	Median OS (months)
Open label 4 x ¹⁷⁷ Lu-DOTATATI Phase II		1	Not required	310	30	33	46
Trials 2 x ⁹⁰ Y-DOTATO	2 x ⁹⁰ Y-DOTATOC ²	Required		1109	34	12.7	44
Radiotracer (PRRT)	^{er} 3 x ⁹⁰ Y-DOTATOC ³ 1 x ⁹⁰ Y-DOTATOC + 2 x ¹⁷⁷ Lu-DOTATOC)C	Required	237 249	28 26	10.4 10.4	47.1 66.1
Trial	Protocol	Hist	tology		CR/PR (%)	Biochemical Response (%)	Clinical Response (%)
Open label Phase II Trial	2 x ⁹⁰ Y-DOTATOC ² NET		T of the pancreas		49	14	38
			NET of the lleum		27	18	28

Rotterdam data: 1: Kwekkeboom, JCO, 2008; Basel data: 2: Imhof, JCO, 2011; 3: Villard, JCO, 2012

2 x ⁹⁰Y-DOTATOC in NETs (Theranostic approach)

Large open label phase II study, N = 1109

Imhof A et al. J Clin Oncol. 2011;29:2416-2423.

Tumor dose-response relationship in patients with neuroendocrine tumors Correlation between ⁸⁶Y-DOTA-TOC dosimetry and treatment outcome

Pauwels et al. J Nucl Med, 2005;46 (Suppl):S92-S98

Tumor dose-response relationship in 13 patients treated with ⁹⁰Y-DOTA-TOC.

Dosimetric calculations are based on ⁸⁶Y-DOTA-TOC PET and CT imaging.

Specific targeting using radiolabeled antagonists

So far only radiolabeled agonists have been used for PRRT

Sst₂ receptor targeting: agonist vs. antagonist

Scatchard-analysis in HEK-sst ₂ cells (B_{max} -values: Mean ± SEM in pM)						
Substance	sst ₂ - binding sites (B _{max} -values)	Internalization				
¹¹¹ In labelled sst ₂ -agonist	23 ± 1.0	sst ₂ -specific internalization				
¹¹¹ In labelled sst ₂ antagonist 354 ± 14		no internalization				
		M. Ginj et al. PNAS, 2006; 103:16436-41				

Affinity profile given as IC ₅₀ (mean ± SEM in nM)							
Peptide	sst_1	sst ₂	sst ₃	sst ₄	sst ₅		
⁶⁸ Ga-DOTA-TATE	>1′000	0.2 ± 0.04	>1′000	300 ± 140	377 ± 18		
⁶⁸ Ga-NODAGA-JR11	>1′000	1.2 ± 0.2	>1′000	>1'000	>1'000		
¹⁷⁷ Lu-DOTA-JR11	>1′000	0.73 ± 0.15	>1′000	>1′000	>1'000		

M. Fani et al. J Nucl Med, 2013, 54:364-372

Sst₂ receptor targeting: agonist vs. antagonist

Immunofluorescence microscopy using the sst2-specific antibody R2-88 in HEK-sst2 cells

No peptide
DOTA-TOC sst2-agonist
Ga-NODAGA-JR11 sst2-antagonist
Ga-NODAGA-JR11 + DOTA-TOC sst2-antagonist + agonist

Immunofluorescence
Immunofluorescence
Immunofluorescence
Immunofluorescence

No peptide
Immunofluorescence
Ga-NODAGA-JR11 sst2-antagonist
Ga-NODAGA-JR11 + DOTA-TOC sst2-antagonist + agonist

Immunofluorescence
Immunofluorescence
Immunofluorescence
Immunofluorescence

Immunofluorescence
Immunofluorescence
Immunofluorescence
Immunofluo

M. Fani et al. J Nucl Med, 2013, 54:364-372

G. Nicolas, D. Wild, M. Fani et al. not published data

Patient with metastatic ileal NET (G2), renal insufficiency grade III

n = 4 patients with progressive neuroendocrine tumors (NETs), dosimetry results are based on 3D voxel-dosimetry analysis							
	Patient 1	Patient 2	Patient 3	Patient 4	Median (inter quartile range)		
Pre-treatment dosimetry: Comparison of the mean radiation dose to tumors (Gy/GBq)							
¹⁷⁷ Lu-DOTA-TATE	1,1- 2,0	5,6 - 13	0,5 - 2,7	1,5 - 4,6	2,0 (1,2-4,6)		
¹⁷⁷ Lu-DOTA-JR11	5,7 - 7,4	16 - 29	4,8 - 5,9	4,2 - 20	7,0 (5,7-16)		
Treatment dosimetry	Treatment dosimetry: Mean total radiation dose to tumors (Gy)						
¹⁷⁷ Lu-DOTA-JR11	23 - 59	283 - 487	33 - 130	39 - 302	47 (37-283)		
Treatment outcome: Response according to RESIST version 1.1							
¹⁷⁷ Lu-DOTA-JR11	Mixed response	PR	SD	PR			
Treatment toxicity: Toxicity according to WHO Common Toxicity Criteria version 2.0							
Hematologic toxcitiy	Grade 2	Grade 3	Grade 2	Grade 2	Grade 2		

Wild et al. J Nucl Med, 2014, 55:1248-1252

Summary and conclusion

► Somatostatin receptor PET is superior to Octreoscan. It is indicated for surgery planning/staging of patients with NETs (G1/G2).

- ► Targeting of multiple somatostatin receptors might be superior to targeting of sst₂ receptors only. Further evaluation is needed.
- PRRT is a palliative systemic therapy for patients with somatostatin receptor positive advanced NETs who show progression.
- ► The theranostik approach can select patients who benefit most of PRRT. The treatment benefit is tumor dose dependent.
- ► Further improvement of somatostatin receptor imaging and PRRT seems possible, e.g. with the use of somatostatin receptor antagonists instead of agonists. Further evaluation is needed.

Acknowledgement

Coworkers

<u>MDs:</u> **G. Nicolas**, Ch. Rottenburger, F. Kaul, O. Maas, M. Braun, T. Baumann, A. Sauter, M.

Radiochemistry: Prof. Th. Mindt, **M. Fani,** A. Baumann and coworkers

Med. Physics/Dosimetry: L. McDougall

<u>Technicians:</u> M. Nagy and coworkers

Nurses: M. Speiser and coworkers

Assistant / Logistics: B. Avis, A. Guggiana, Ch. Evard

Collaboration

J.C. Reubi, University of Bern, Switzerland P.J. Ell, M.A. Caplin, University College London, London, GB H.R. Mäcke, University Hospital Freiburg, Germany H. Bouterfa, Octeopharm GmbH, Berlin, Germany

Thank you for your attention

