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Quantification by tracer kinetic modelling…

• …what is it all about?

• …is it interesting in research? (example: brain FDG PET)

• …how does it work?

• …is it useful in routine patient care?

• …very short summary

• two technical issues (statistical noise, nonlinearity)
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Quantification in nuclear medicine

Level 2 („diagnostics“): physiological parameters

Level 1 („dosimetry“): tracer concentration (kBq/ml)

• metabolic rates (µmol substrate / g tissue / min)

• perfusion (ml blood / g tissue / min)

• receptor density (fmol / mg)

• affinity of tracer for target (nM)

• density of pathological targets (Aß-paques, τ-tangles…)

• …
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[F-18]-fluorodeoxyglucose (FDG): function / target depends on the region of interest

• 20% energy consumption

• 2% body weight

information processing

via neurotransmitter systems

tumor: glycolysis (Warburg effect)

kidneys / bladder: renal clearance

?
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FDG-PET of the brain: surrogate for signaling-related synaptic activity

Kadekaro, Crane, Sokoloff
Proc. Natl. Acad. Sci USA 1985; 82: 6010-13

ipsilateral contralateral ipsilateral contralateral

dorsal horn of spinal cord

synapses*

dorsal root ganglion

cell bodies

5 Hz

10 Hz

15 Hz

electrical stimulation of sciatic nerve (rat)

C-14-glucose i.v.

45 min uptake period

post mortem autoradiography

*: europil

• axonterminals

• dendritic processes

• astrozytic processes
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FDG-PET of the brain: surrogate for signaling-related synaptic activity

ipsilateral contralateral ipsilateral contralateral

dorsal horn of spinal cord

synapses

dorsal root ganglion

cell bodies

5 Hz
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15 Hz

metabolic rate of glucose (µmol / 100g / min)

stimulation frequency
5 Hz 10 Hz 15 Hz0 Hz

Kadekaro, Crane, Sokoloff
Proc. Natl. Acad. Sci USA 1985; 82: 6010-13

Sokoloff, Neurochem Res 1999; 24: 321-329

Spinalganglion
Zellkörper
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FDG-PET: mapping of spike frequency of the brain („rest“ / stimulation) 

metabolic rate of glucose (µmol / 100g / min)

stimulation frequency
5 Hz 10 Hz 15 Hz0 Hz

Sokoloff, Neurochem Res 1999; 24: 321-329

Spinalganglion
Zellkörper

metabolic rate of glucose (µmol / 100g / min)
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Quantification of physiologic parameters in PET: problem

unmetab.
FDG

Cf

FDG-
6-phosphate

Cb

k2

K1

k3

input = FDG in blood Ca

Tissue

compartments defined

by function

not localization
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unmetab.
FDG

Cf

FDG-
6-phosphate

Cb

k2

K1

k3

input = FDG in blood Ca

Tissue

compartments defined
by function, not localization

PET image volume 
element (voxel)

sum of signals
from all compartments
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Quantification of physiologic parameters in PET: solution

X

Y

time

space

functional compartments might be separated in time (rather than space)
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Quantification of physiologic parameters: tracer kinetic modelling

1a) dynamic PET (SPECT) imaging

1b) sampling (arterial) blood (input function) 

blood

tissue

Compartment model

tissue

K1

k2

2. fit model to measured data

0

25

50

75

100

activity concentration (kBq / ml)

0 60 120 time (s)

time activity curves (TAC)

(→ „modelling“)Workflow

3. maps of physiological parameters

Page No. 15

Quantification by tracer kinetic modelling…

• …what is it all about?

• …is it interesting in research? (example: brain FDG PET)

• …how does it work?

• …is it useful in routine patient care?

• …very short summary

• two technical issues (statistical noise, nonlinearity)

Page No. 16

Kinetic modelling: To model or not to model?

regional
cerebral
blood flow
(ml/100g/min)

uptake
(arbitrary units)

F-18-FDG (glucose metabolism) O-15-water (perfusion)

more no

more yes
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FDG PET: quantification versus semi-quantification

unmetab.
FDG

Cf

FDG-
6-phosphate

Cb

k2

K1

k3

input = FDG in blood Ca

Tissue

Ki = K1*k3 / (k2 + k3)

semi-quantification

Standardized Uptake Value

SUV =
tracer concentration in ROI

injected tracer dose per kg bw
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FDG-PET: tracer kinetic modelling versus retention image

Graham M et al., Nucl Med & Biol 2000; 27: 647-55 

40 patients with colon cancer

metabolic rate of glucose Ki
(kinetic modelling)

FDG retention
(standardized uptake value, SUV)
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FDG-PET: tracer kinetic modelling versus retention image

Graham M et al., Nucl Med & Biol 2000; 27: 647-55 

FDG retention
(standardized uptake value, SUV)

metabolic rate of glucose
(kinetic modelling, Ki)
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unmetab.
FDG

Cf

FDG-
6-phosphate

Cb

k2

K1

k3

input = FDG in blood Ca

Tissue

FDG: pharmacokinetics
• phosphorylation is irreversible

• single pass extraction fraction is small

K1 = E * F

F = perfusion (ml / 100g / min)

E = extraction = 1 – exp(-PS/F)

PS = permeability surface area product

E ≈ 1 – (1 – PS/F) = PS/F

K1 = E * F ≈ PS/F * F = PS

FDG retention ~ metabolic rate

healthy subjects (brain, euglycemia)

K1 = 0.07 ml/g/min

k2 = 0.12 min-1

k3 = 0.04 min-1

GLUT

hexokinase

GLUT

(Renkin-Crone)

i.e., K1 independent of perfusion
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FDG: cave in extreme conditions

Recurrence of hepatocellular carcinoma after chemoembolisation

FDG retention metabolic rate of glucose

adapted from Wolfgang Burchert, Bad Oeynhausen
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FDG: cave in extreme conditions

perfusion (H2
15O)

Recurrence of hepatocellular carcinoma after chemoembolisation

FDG retention metabolic rate of glucose

adapted from Wolfgang Burchert, Bad Oeynhausen
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FDG: cave liver

unmetab.
FDG

Cf

FDG-
6-phosphate

Cb

k2

K1

k3

input = FDG in blood Ca

Tissue

k4
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O-15-water

uptake
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1-tissue compartment models

2-tissue compartment models

unidirectional transport

tissue

K1

bidirectional transport

irreversible binding

free

K1

k2

bound
k3

reversible binding

free

K1

k2

bound

k3

k4

O-15-water

tissue

K1

k2

Compartment models

freely diffusible

K1 = E * F ≈ F

F-18-FDG
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Bidirectional transport

formula representation

TA
T CkCK

dt

dC
21 −=

operational equation

PET signal (time activity curve)

graphical representation

one-to-one

CT

K1

k2

CA

dssCeKC A

t
tsk

T )(
0

)(
1

2∫
−−=

(analytical) solution
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Fitting

fit

CT

CT

K1

k2

CA (s)dsCeKC A

t

0

t)(sk
1T

2∫
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Perfusion reserve capacity

rest

0

70

rCBF
(ml/100g/min)

R L

maximum dilatation of blood vessels (Diamox)

Female, 16 y, Moyamoya disease

steal!
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0

70

ml/100g/min

Diamoxrest

arbitrary units

rCBF

uptake
integral of 60 s

after arrival in brain

Perfusion reserve capacity

Female, 16 y, Moyamoya disease

steal

steal or reduced increase?
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Image algebra

- /

=

Diamox rest rest
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Diamox

0

50

R L

cerebrovascular reserve (%)

= 100*(Diamox-rest)/rest

CVR (%)negative CVR → steal

Perfusion reserve capacity

Female, 16 y, Moyamoya disease Page No. 32
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Quantification by tracer kinetic modelling…

• …what is it all about?

− quantitative estimates of physiological parameters

• …is it interesting in research? (example: brain FDG PET)

− yes!

• …how does it work?

− expensive

• …is it useful in routine patient care?

− yes, but for a few indications only
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„technical“ issue: statistical noise

number of radioactive decays

probability
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How to handle statistical noise

k = ln(2)/T1/2

N

N = N0 * exp(-kt)

aim: determine half-life time of a radioactive source

model:

solution (operational equation):

ln(N) = ln(N0) - kt
provides „best“ solution

N

t

minimize sum of
squared differences
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nonlinear operational equation

(with respect to the rate constants)

dssCeKC A

t
tsk

T )(
0

)(
1

2∫
−−=CT

K1

k2

„technical“ issue: nonlinearity
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reversible binding

C2

K1 k2

C3

k3 k4

tissue voxel

Nonlinearity→ „ill-conditioned“
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How to handle nonlinearity

sum of squared differences

No method that
guarantees identification
of the global minimum

K1

k2

particularly in presence of noise
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Thank you!


