

Translational Research in Molecular Imaging and Radionuclide Therapy

Overview Molecular Imaging

PET and SPECT

Medical imaging and the pathology cascade

Diagnostic approach

Nuclear/Molecular Medicine

Radiology

Molecular interactions of radiolabeled probes

In vivo imaging of biological processes with radiolabeled molecular probes

Visualization of overexpression or increased activity of:

- Receptors
- Enzymes
- Transporters

Nuclear Molecular Imaging

In vivo imaging of biological processes with radiolabeled molecular probes

Molecular Probes (Tracers)

COMPARTMENT MODEL

Berlin, August 25 - 27, 2016

Steps to molecular image acquisition

1. Radionuclide

4. Application

5. Scan

6. Image

Planar Scintigraphy

target-specific radiopharmaceuticals

Bone-Scintigraphy (^{99m}**Tc-MDP)**

Single Photon Emission Computed Tomography (SPECT)

Myocardial SPECT

Cardiovascular disease, ergometry until 75 Watt

Positronen-Emissions-Tomographie (PET)

¹⁸F-Fluoride PET

Fluordeoxyglucose-PET (Sarkoidosis)

SPECT/CT

SPECT/CT Prostate Cancer Bone Scan

Age 68 yrs., Post OP **PSA** increased Bone Scan, (745 MBq Tc-99m-HDP) SPECT/CT

Staging I

Staging II Pedicle of vertebral arch

Staging III Metastasis Os sacrum

MIBG SPECT/CT

- 2 yrs., Neuroblastoma Stage IV, post therapy, Neuroplastoma recurrence with cerebral and abdominal metastases, Tumour progress under recurrence therapy
- Planar imaging and SPECT/CT with contrast agent 5 days post therapy

OGN

PET/CT

PSMA PET/CT

Bronchial carcinoid with sudden onset of blurry vision

Small animal imaging

- Important for development of new tracer
- Final preclinical step in the process from bench to bedside
- µSPECT / CT
- $\mu PET / CT$

Small Animal Imaging / Model Examples

Small Animal -PET/CT

Small Animal – SPECT/CT

Small Animal – PET/SPECT/CT

Micro PET: Dedicated Small Animal System

Micro PET Siemens Inveon

Micro PET: Dedicated Small Animal System

Micro PET Siemens Inveon

Micro PET - measurement of the glucose metabolism with ¹⁸F-FDG and of the skeleton with the bone affine radiopharmaceutical ¹⁸F-NaF in a mouse.

¹⁸F-Sodium fluoride

¹⁸F-Fluorodesoxyglucose

Digital PET Sub-System

- Digital PET = direct coupling of scintillator to solid-state detectors
- No light sharing between detectors (better image quality)
- Patented Fast 3D Tomographic Image Reconstruction (December 2013)
- => Improved detectability of small lesions
- = > High count rate capability from very low activity to 80MBq
- => Superior image quality with excellent contrast ratio

- Bore diameter: 15cm
- Transaxial FOV: User-selectable 46-100 mm
- Axial FOV: 30cm (continuous motion)
 - LabPET4
 - LabPET8

ellschaft fü

DGN

LabPET12

- Quad-APD detector modules coupled with LYSO/LGSO phaswich scintillators
- · Individual readout, parallel signal processing
- · Fully integrated with SPECT and CT;
- field- upgradable

TriFoil

PET/CT Cardiac Imaging - Mouse

PET/CT: 0.7mCi of FDG, 20min. Post injection, 5 min. scan

Detail of gated cardiac images

Courtesy of Dr. Ren-Shyan Liu, National Yangming University, Taipei, Taiwan

Excellent isotropical resolution: 185 g rat

LabPET 8

schaft fü

Figure 10. Volume-rendered images (a), (b) of a 185 g rat injected with 31 MBq of $Na^{18}F$ and scanned 68 min post-injection on the LabPET8. Transaxial slices of the skull (c) and the ribcage (d) and a sagittal slice (e) are shown. The whole-body image was obtained by acquiring five overlapping decay-compensated scans with 3.78 cm steps for a total of 60 min. The image was obtained with a lower energy threshold of 350 keV and reconstructed using 80 3D MLEM iterations.

Reference: Imaging performance of LabPET APD-based digital PET scanners for pre-clinical research; M. Bergeron et al.; Universite de Sherbrooke, QC, Canada; Phys. Med. Biol. 59 (2014) 1–18

TriFoil

Small Animal Imaging / Model Examples

Small Animal -SPECT/CT

Small Animal -SPECT/CT

Micro SPECT: Measurement of the bone skeleton with ^{99m}Tc-HDP

U-SPECT-II

^{99m}Tc-MIBI

CARDIAC PMOD - 17 segment model

I. besal anterior 7. mid-anterior 13. apical anterior
2. basal anteroseptal 8. mid-anteroseptal 14. apical septal
3. basel inferoseptal 9. mid-inferoseptal 15. apical inferior
4. basel inferior 10. mid-inferoseptal 15. apical inferior
5. basel inferoslerent 11. mid-inferoseptal 17. apics
6. basel anterolaternal 12. mid-anterolaternal

Multiplex Multi Pinhole (MMP) - S P E C T

- Micro SPECT: MMP-Technology with a clinically used SPECT gamma camera
 - Physical measuring principals
 - Characterisation and performance parameters

Siemens SPECT E.cam gamma camera

7-Pinhole Aperture Plate

Micro SPECT: Measurement with MMP-Technology by a clinically used SPECT gamma camera

SPECT

^{99m}Tc-HDP

Micro SPECT: Measurement of a mouse bone skeleton with ^{99m}Tc-HDP

Berlin, August 25 - 27, 2016

СТ

^{99m}Tc-Hydroxy-Diphosphonat

Fusion

CT - ^{99m}Tc-HDP SPECT

Biodistribution of ¹²³I-5-iodo-4´-thio-2´-deoxyuridine (¹²³I-ITdU) in WiDr xenografted mouse models - MMP μ SPECT, 10.0 MBq 60 min p.i.

СТ

OGN

µSPECT [¹²³I]-ITdU FdUrd-Appl.

Fusion µSPECT [¹²³I]-ITdU + CT

Examples for small animal imaging: biodistribution studies play a major role

- New tracer development
- New pharmaca development
- Therapy studies

Indomethacin derivates targeting COX2

Biodistribution of nucleosid analogues

OGN

COX2-specific Inhibitors: PET-Tracer

Cellular uptake of COX2-PET Tracer: Competition study with cold standards and [I-125]Indo_23 as COX2 Tracer und corresponding PhosphorImager and Western Blot Analysis

Western Blot Analyse with COX2-spec. Ab 1 2 3 4 5 6 7 8 COX-2 Tetramer 1. HEK COX-2 mit [I-125]Indo_23, Tet stimulated 2. HEK COX-2 [I-125]Indo_23, unstimulated

HEK COX-2 mit [I-125]Indo_23, let stimulated
HEK COX-2 [I-125]Indo_23, unstimulated
HEK COX-2 mit [I-125]Indo_23 + CX, Tet stimulated
HEK COX-2 mit [I-125]Indo_23 + CX, unstimulated
HEK COX-2 mit [I-125]Indo_23 + Indo_21, Tet stimulated
HEK COX-2 mit [I-125]Indo_23 + Indo_21unstimulated
HEK COX-2 mit [I-125]Indo_23 + Indo_22, Tet stimulated
HEK COX-2 mit [I-125]Indo_23 + Indo_22, Tet stimulated

Berlin, August 25 - 27, 2016

Morgenroth, Zlatopolskiy, Mottaghy et al.

Fig. 3. Binding specificity and intracellular distribution of iodinated indomethacin derivatives. (A) SDS and western blot analysis od COX-1 and COX-2 expression in HUVEC, HEK hCOX-2nat and HEK hCOX-2del cells in dependency on PMA- and Tet-stimulation, respectively. GAPDH served as a loading control. (B) SDS gel electrophoresis of cell lysates obtained from HEK hCOX-2del cells incubated with ¹²⁵I-1 and ¹²⁵I-2 and visualized by phosphorimager (*left*); subsequent western blot analysis with COX-2 specific antibody. (C) Intracellular localization of ¹²⁵I-1 and ¹²⁵I-2 in HEK hCOX-2*del* cells detected by microautoradiography followed by a standard H&E staining.

Berlin, August 25 - 27, 2016

A

OGN

Deutsche esellschaft fü learmedizi

Fig. 4. Cellular uptake with ¹²⁵I-**1** and ¹²⁵I-**2** compounds in colon carcinoma cells after 1h and 4h incubation (in % of incubated dose (ID)/well). (A) Cellular uptake of ¹²⁵I-**1** in HT29 and HCT-116 cells w/o and with CX. (B) Cellular uptake of ¹²⁵I-**2** in HT29 and HCT-116 cells w/o and with CX.

Fig. 5. *In vivo* study with ¹²⁴I-**2** compound in colon carcinoma xenografted SCID mice. (A) µPET/CT molecular imaging of COX-2 with¹²⁴I-**1** in HT29 (upper panel) and HCT-116 (lower pannel) xenografted SCID mice at 4h p.i.. (B) Uptake of ¹²⁵I-**2** in HT29 and HCT-116 tumors (in kBq/g tissue) (upper panel); tumor to muscle uptake ratio of ¹²⁵I-**2** in HT29 and HCT-116 tumor xenografted mice (lower panel). (C) immunhistological analysis of COX-1 and COX-2 in HT29 and HCT-116 xenografts.

New pharmaca development

Phosphodiesterase-10A (PDE10A) is implicated in several neuropsychiatric disorders involving basal ganglia neurotransmission, such as schizophrenia, obsessive–compulsive disorder and Huntington's disease.

S. Celen et al. NeuroImage 82:13–22, 2013

Deutsche Gesellichaft für Nuklearmedizin e.v. 2016

New pharmaca development

S. Celen et al. NeuroImage 82:13–22, 2013

Glucose metabolism: therapy response

Dose-response relationship in cyclophosphamide-treated B-cell lymphoma xenografts monitored with [¹⁸F]FDG PET

Lieselot Brepoels • Marijke De Saint-Hubert • Sigrid Stroobants • Gregor Verhoef • Jan Balzarini • Lue Mortelmans • Felix M. Mottaghy

→ [18F]FDG – Uptake represents doseeffect-dependency of Cyclophosphamid

Proliferation: Therapy Response

Take home

- SPECT and PET
 - provide a broad spectrum of diagnostic approaches
 - help to understand biological processes
 - are an important link in the "bench to bedside" concept of probe development
- Molecular Imaging
 - is important for non-invasive monitoring of disease
 - supports development of new theranostic concepts

