Translationals Research in Molecular Imaging and Radionuclide Therapy DGN Summer School 2017

Optical Imaging: Fluorescence and Bioluminescence

Carsten Grötzinger

Tumor Targeting Group Medizinische Klinik m.S. Hepatologie und Gastroenterologie

CHARITÉ CAMPUS VIRCHOW-KLINIKUM

Why optical imaging?

Technique	Resolution	Depth	Time	Imaging agents	Target*	Cost [‡]	Primary small- animal use	Clinical use
MR	10–100 μm	No limit	Minutes-hours	Gadolinium, dysprosium, iron oxide particles	A, P, M	\$\$\$	Versatile imaging modality with high soft-tissue contrast	Yes
CT	50 µm	No limit	Minutes	lodine	A, P	\$\$	Lung and bone imaging	Yes
Ultrasound	50 µm	Millimetres	Minutes	Microbubbles	A, P	\$\$	Vascular and interventional imaging	Yes
PET	1–2 mm	No limit	Minutes	¹⁸ F, ¹¹ C, ¹⁵ O	P, M	\$\$\$	Versatile imaging modality with many different tracers	Yes
SPECT	1–2 mm	No limit	Minutes	^{99m} Tc, ¹¹¹ In chelates	P, M	\$\$	Commonly used to image labelled antibodies, peptides and so on	Yes
FRI	2–3 mm	<1 cm	Seconds-minutes	Photoproteins (GFP), NIR fluorochromes	P, M	\$	Rapid screening of molecular events in surface-based tumours	Development
FMT	1 mm	<10 cm	Seconds-minutes	NIR fluorochromes	P, M	\$\$	Quantitative imaging of targeted or 'smart' fluorochrome reporters in deep tumours	Development
BU	Several millimetres	Centimetres	Minutes	Luciferins	М	\$\$	Gene expression, cell and bacterial tracking	No
Intravital microscopy (confocal, multiphoton)	1 μm	<400 μm	Seconds-minutes	Photoproteins (GFP), Fluorochromes	P, M	\$\$\$	All of the above at higher resolutions but at limited depths and coverage	Limited development (skin)

Rudin and Weissleder, Nature Reviews in Drug Discovery, 2003

Low cost of tracers and instrumentation

Why optical imaging?

- Low-energy, non-ionizing radiation
- Tracers are stable (no radioactive decay), can be stored indefinitely
- Imaging of genetically encoded markers (fluorescent proteins, luciferases)
- Simultaneous detection of multiple tracers (filters)

Autofluorescence: wavelength-dependent

Current Opinion in Chemical Biology

Frangioni-JV, Curr Op Chem Biol, 2003

Absorption in tissue: wavelength-dependent

Georges de la Tour: Saint Joseph charpentier, 1643, Louvre

Weissleder et al., Nat Biotechnol, 2001

Advantages of near-infrared fluorescent (NIRF) detection

Weissleder, Nat Biotech 19:316 (2001)

- high tissue penetration (mm-cm)
- Iow tissue autofluorescence
- many assay platforms & imagers
- translational: microscopy to human

Optical Imaging: near-infrared fluorescence

Fluorescence Reflectance Imaging (FRI)

2D detection of NIRF probes in subcutaneous tumor models

➡ fast, parallel detection of probes in two NIR channels (685, 785 nm)

Fluorescence Molecular Tomography (FMT)

- 3D imaging of NIRF probes in orthotopic tumor models
- quantitation of NIRF probes in the animal

Optical Imaging: near-infrared fluorescence

Optical Tomography: phantoms

Preclinical near-infrared fluorescent tumor imaging

RIN38/SSTR2 tumor, dose: 0,02 µmol/kg i. v.

Bioluminescence – a chemical reaction -

Production and emission of light in living organisms as a result of chemical reaction

Bioluminescence as a tool for molecular imaging of tumor

models

monitor tumor cells in
 predictional situalies
 Neterational situalies
 Neterational situation
 Higte chicrugh pric rometastases
 Monitonale and parts sight from the
 beginning softimp lantation
 Monistore grate the price topic tumors non-invasively

Technique	Spatial resolution and time scale	Clinical imaging	Application	Main characteristics
Ultrasound	50 µm; min	Yes	Anatomical, functional	Difficult to image through bone or lungs; microbubbles used for contrast enhancement
CT	50–100 µm; min	Yes	Anatomical, functional	Poor soft tissue contrast
MRI	$80-100 \mu\text{m}$; s to h	Yes	Anatomical, functional, molecular	High spatial resolution and soft tissue contrast
SPECT (low-energy γ -rays)	1–2 mm; min	Yes	Functional	Radioisotopes have longer half-lives than those used in PET; sensitivity 10 to 100 times smaller than PET
PET (high-energy γ -rays)	1–2 mm; min	Yes	Metabolic, functional, molecular	High sensitivity (picomolar concentrations): cyclotron needed
Bioluminescence	1–10 mm; s to min	No	Molecular	High sensitivity; transgene-based approach; light emission prone to attenuation with increased tissue deptl
NIRF	1–3 mm; s to min	No	Molecular	Excitation and emission light prone to attenuation with increased tissue dept

Applications

Oncology

Tumor growth and metastasis Tumor related gene study

Functional genomics

Expression profiles and regulation studies, protein-protein interactions, apoptosis...

Stem cell research

Infectious disease

Infectious pathway Molecular study

Gene delivery and therapy Expression kinetics and localization

Pharmaceutical applications

Drug discovery (HTS) Pharmacokinetics absorption, distribution, metabolism

Toxicology research applications

Pharmaceutical kinetics and localization

Bioluminescence In vitro kinetics of luciferase expressing cell lines

In vitro Bioluminescence

Bioluminescence kinetics

Black 96-well plate

controls

- Seed cells according to scheme and incubate over night
- Add D-luciferin ($150\mu g/ml$) and measure photon emission every 10', during 1 • hour.
- Calculate photon/sec/cell \checkmark
- **Build kinetics curve** \checkmark

Bioluminescence

Subcutaneous implantation of pancreatic carcinoma cells in nude mice - BxPc3-Luc2 -

Advantages of orthotopic tumor models: pancreas

BON cells and other models

Inoculation

Primary tumor

Metastasis

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

P. Schulz, A. Scholz

Bioluminescence

Orthotopic implantation of pancreatic carcinoma cells in nude mice - BxPc3-Luc2 -

- * Cell number and viability (necrosis!)
- * Depth of localization (absorption, scatter)
- * Type of luciferase, type of substrate

Integrin Imaging Anti-angiogenesis targets for imaging: integrin antagonists

Modifiziert nach (Quelle: Ophthotec.com)

- Inhibits neo-angiogenesis and lymphangiogenesis in various tissues (Umeda et al., 2006; Dietrich et al., 2007; Okazaki et al., 2009; ...)
- Inhibits proliferation in a glioblastoma mouse model (Färber et al., 2008)

Photophysical & phtotochemical properties

In vivo near-infrared fluorescent (NIRF) imaging of tumorbearing mice using $\alpha 5\beta 1$ integrin probes, A549 xenografts

probe	Abs _{max} [nm]	Em _{max} [nm]	Φ	EC [L mol-1 cm-1]
DY751	731	775	≥ 19,9 %	116800
JSM07	736	771	≥ 21,5 %	85430
JSM14	737	770	≥ 20,9 %	98270

Integrin Imaging Competition in A549 Tumors

➤ Competition by injection of unlabelled integrin antagonist (1000 fold) 15 min before injection of fluorescent conjugates

✓ Competition with unlabelled antagonist leads to inhibition of contrast enrichment of I07 and I14

Dual monitoring of a new orthotopic colorectal cancer mouse model

HT29-luc (n=5) HCT116-luc (n=5) Colo205-luc (n=8) n=5 **10**¹ n=4 15 **10**¹ **c** 15 10¹¹ r 15 2 10^{1 0/} ses/s 10 1 d bhotons/sec 10¹⁰ 10¹ 10¹ bhotons/ sec 10 10 10 10 10 10 5 5 tumor score tumor score 10 10 luminescence colonoscopy · 5 10 107 10 10⁶ 106 10 - 0 - 0 Ó 0 2 3 5 1 2 3 5 0 2 3 5 weeks weeks weeks

NIRF imaging of $\alpha_v \beta_3$ integrin in vivo/ex vivo

24h post injection, 2 nmol

Endomicroscopic ex-vivo analysis of $\alpha_v \beta_3$ integrin targeting

Confocal fluorescence endomicroscopic fiber probe Exc 660 nm, Em >675 nm (MaunaKea)

HT29 -Luc (n=5)

HCT116 (n=3)

Schulz et al Mol Imaging Biol 2015

Broggini et al Eur Spine J 2015

Contrast agent: ICG

Desai et al, J Am Coll Cardiol 2005

Poellinger et al, Radiology, 2011 Troyan et al, Ann Surg Oncol 2009

Bernd Ebert (Physikalisch-Technische Bundesanstalt) Kai Licha, Michael Schirner (mivenion)

Comparison of nanoICG with ICG, 24 h post injection, 800nm channel, A459 lung tumor xenografts

24h p.i. ICG (0,2 mg/kg)

24h p.i. nanoICG (0,2 mg/kg)

Ex vivo imaging nanolCG, 800 nm, A459 tumors

24h p.i. ICG (0,2 mg/kg)

Semi-quantitative analysis from dorsal view, 24 h post injection, 800 nm channel

TECHNICAL REPORTS

medicine

Detection of colonic dysplasia *in vivo* using a targeted heptapeptide and confocal microendoscopy

Pei-Lin Hsiung¹, Jonathan Hardy¹, Shai Friedland^{2,3}, Roy Soetikno^{2,3}, Christine B Du¹, Amy P Wu¹, Peyman Sahbaie², James M Crawford⁴, Anson W Lowe³, Christopher H Contag¹ & Thomas D Wang^{2,3}

VOLUME 14 | NUMBER 4 | APRIL 2008 NATURE MEDICINE

Figure 2 *In vivo* confocal fluorescence images of peptide binding.
(a) Binding to dysplastic colon polyp. (b) Binding to adjacent normal mucosa. (c,d) Histology of dysplastic colon polyp (c) and normal mucosa
(d) stained with H&E. Scale bars, 20 μm.

Figure 3 *In vivo* confocal fluorescence images of the border between colonic adenoma and normal mucosa, showing peptide binding to dysplastic colonocytes. (a) Endoscopic view. (b) Border. (c) Dysplastic crypt. (d) Adjacent mucosa. Scale bars, $20 \ \mu m$.

Human study. IRB approval was granted by Stanford University Medical Center and the VA Palo Alto Health Care Systems. We recruited individuals undergoing routine screening colonoscopy and obtained informed consent from all individuals. Polyps that were identified endoscopically during routine colonoscopy were washed with water for ~ 5 s to remove excess mucus. Approximately 3-6 ml of peptide at a concentration of 100 µM was then administered topically to 1-2 cm2 of the surface of the colon using a standard endoscopic spray catheter. Excess peptide was removed by gently rinsing the region with water. Imaging was performed within ~5 min of peptide administration using the Cellvizio-GI confocal fluorescence imaging system (Mauna Kea Technologies). The fibered confocal microscope was passed through the instrument channel of a standard colonoscope (Olympus CFQ-160). Imaging of the polyp and adjacent endoscopically normal-appearing mucosa was performed before and after peptide administration. After imaging, the polyp was removed according to standard protocol, submitted for routine histology, and analyzed by staff pathologists at the Palo Alto VA Hospital.

Clinical application of NIRF probes

Endoscopy

Mammography

Sentinel LN surveillance

Burggraf et al, Nat Med 2015 Poellinger et al, Radiology, 2011 Troyan et al, Ann Surg Oncol 2009

Intraoperative imaging

Color image

Hybrid image

Van Dam et al, Nat Med 2011

